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An approximate relation for shock wave front propagation in the case of an atmosphere whose den-
sity depends exponentially on altitude was obtained in [1] for a very simple model of a strong explosion.
This relation was improved in [2], where the time and angular coordinate dependences of the pressure,
density, and velocity of the particles at the front were also obtained, Approximate account for the two
dimensional nature of the phenomenon was used in [3]. The authors started from the assumption that the
flow is locally radial, as a result of which the problem was reduced to a one-dimensional problem with
parameteric dependence of the solution on the angular coordinate,

A comparatively late stage of a planar explosion was examined in [4, 5]; the resulting asymptotic
gelf-similar solutions were applied to the point explosion in [6]. Similar asymptotic studies were made
in [7, 8]. The first attempt to study the problem numerically in the exact formulation was made in 1955 in
{9] (see also: V.V, Rusanov, doctoral dissertation, Moscow, 1968).

In the present paper the problem is examined in the same basic formulation as in the preceding
studies; we study a strong point explosion in an exponential atmosphere without account for the real
properties of the air. However, in contrast with the preceding studies, where the motion was examined
either by approximate methods or for early moments of time, when the nonhomogeneity does not show up
very strongly, here we solve numerically the exact equations of gasdynamics and the calculation is carried
out to a later phase., The computational results are compared with the data of [2].

PROBLEM FORMULATION

We consider an inviscid, perfect gas and heat conduction and radiation are ignored. The density
po' and pressure py' of the atmosphere depend exponentially on the altitude z' measured from the point Py,
where at the initial time t = 0 the energy E; is released
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Here A is the nonhomogeneity scale [6]. During the explosion a shock wave is formed, which
separates the region of disturbed gas flow from the undisturbed gas. The phenomenon has axial symmetry,
all the characteristics depend on the cylindrical coordinates z', r' and on the time t'. The motion is
examined in the half plane II (' = 0), bounded by the axis of symmetry. Let p' be the pressure, p' the
density, u', v' the horizontal and vertical components of the velocity. Dimensionless variables are
introduced by the formulas
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where the dimensionless factor o, depends [10, 11] on the adiabatic exponent v, assumed constant.

The equations describing the motion take the form
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The boundary conditions at the shock wave will be the

~z Rankine — Hugoniot conditions
R o 2 Ap7? e vt A
p=cthltty ] rmeTm - (1.4)
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where N is the shock wave propagation velocity, ¢ is the angle of
the normal to the front with the r axis. On the axis r = 0, we pose
the symmetry conditions

dp _ dp v

L A = 1.5
? Fr =l (1.5)

w=0
The explosion is assumed strong, the parameters Ag and A
in (1.3) and (1.4), which are the influence of the gravity force and
backpressure, are assumed zero, The solution of the problem thus
obtained depends on a single dimensionless parameter — the
Fig. 1 adiabatic exponent v,

SOLUTION METHOD

. 7P 7 p In the half-plane II we identify the central region Gg (hereafter
\| 08|04 | [emdéo denoted by CR), with the boundary Iy(t), containing the explosion
{ ! point Py, In the problem solution process the boundary Ij(t) is
selected so that the pressure in the entire CR can be considered
/ mglez Tlazmlesy constant, The physical basis for this assumption is the high
/ , propagation velocity of the disturbances in the vicinity of the point Py,
- T~ wmls | For each moment of time the pressure in the CR is determined
27 3.1 75 z Jilaowjze  with the aid of an energy balance; the density and velocity, required
J to calculate the kinetic energy, are extrapolated into the CR from
V) . W’ ’ the finite-difference computational region Gy, bounded by the curve
a7 75 77 " 77 T (t), the shock wave front Ii(t), and two segments of the symmetry

Fig. 2 axis (Fig. 1),

With the aid of a special coordinate system, shown
schematically in Fig. 1, the region Gy is mapped onto a fixed
rectangle in the plane of the computational variables (£, #). The equations of motion (1.3), transformed
to the variables (7, £, &), are approximated with the aid of the explicit two-layer scheme first used in [12]
in 1962 to solve the problem of supersonic flow past a blunt body.

To calculate the shock wave front the equation for the total particle velocity at the front is combined
with the Rankine — Hugoniot conditions. Finite-difference approximations for the symmetry conditions (1.5)
are used on the boundary segments corresponding to the segments of the symmetry axis.,

Smoothing is used when oscillations associated with the presence of large gradients appear.

The energy balance is used as a check,

COMPUTATIONAL RESULTS

The proposed method was checked on various one-dimensional problems, specifically in the solution
of the point explosion problem in a uniform atmosphere with account for backpressure. Good agreement
with the data of [13] was obtained.

The solution of this problem was obtained on a grid containing 320 nodal points (16 rays and 20 nodes
on each ray), The calculation was made for v = 1.2, The self-similar solution of Sedov [10, 11] was used
as the initial conditions in this calculation (initial front radius was 0.054). The calculations were carried
out to 7T = 13,4, The essential unsteadiness of the problem shows up quite completely in this time: some
quantities vary over tremendous ranges, for example the pressure in the upper part of the front decreases
by six to seven orders of magnitude in comparison with the initial value. The spatial nonuniformity is also
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z marked: at 7= 13.4 the pressure in the lower part of the front is 50
times higher than that in the upper part of the front. With increase of
— the nonuniformity we note contraction of the CR in terms of the

\ relative coordinate; the influence of the nonuniformity seems to
penetrate into the central zone, Up until 7 = 0,2 the pressure in the
F\ CR coincides with the corresponding pressure in the self-similar
solution, then it becomes lower: at 7= 1.39 the difference dp,
amounts to 9%; at 7 = 4.4, 6py = 26%; and so on, It appears that in the
strong stage the phenomenon of "suction" of particles from the central
region takes place, The more marked decrease of the pressure in the
45 _ CR in comparison with [10, 11} probably facilitates the upward move-~

/]

| ment of the CR as a region of constant pressure, which is observed

with increase of the nonuniformity. At T ~86.2 the shock wave, as it
Fig. 3 travels upward, reaches the minimal value of its velocity; then.
acceleration of the upper part of the front begins.

/ As the spatial nonuniformity grows, the approximation errors
_ owing to the quite coarse grid increase, which shows up in an increase
WZT ~ \ of the relative energy disbalance 6E; thus 6E =7, 20, and 30%
Q22 respectively for 7 = 1,39, 4.4, 6.1.
708 The results relating to large values of T are of only qualitative
\o value. Figure 2 shows the distribution of the functions p and p for

T 1= 6.1 with respect to the z coordinate along the lower and upper
rays of the grid, At this moment the shock wave front has traveled

aov upward a distance which exceeds by more than a factor of two the
N B N " corresponding distance downward., We note large gradients of the
\oﬁ solution in the lower part and complete restructuring of the density
h 5 75" 77— profile, and even more so of the pressure profile in the upper part

of the disturbed region. Thereafter we observe qualitative corres-

Fig. 4 pondence of these profiles with the self-similar solution of [5].

Comparison with Data of [2], Figure 3 shows for T = 3,05 and 6,1 the positions of the shock wave
front from the results of the present study (solid curves) and from the data of [2] (points). The maximal
relative discrepancy (in the radial direction) occurs at the lower end of the axis of symmetry and does not
exceed 7%.

As we would expect, the gasdynamic parameters at the front, which have in [2] to some degree an
effective (integral) significance, agree much more poorly with the results of our calculations. Figure 4
shows the pressure distribution at the front as a function of the angular coordinate ¢ for 7= 1,39 and 7=
4.4, The solid curves are plotted from our results; the points are the results of [2].
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